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Abstract. When the nucleus of an atom decays by emitting anα particle, the surrounding electrons
are perturbed and the atom may be ionized. We consider two types of schematic one-dimensional
models, I and II, that simulate this ionization process. In model I the α particle is treated as a
classical point charge that is emitted by the nucleus at a certain time and travels out at constant
speed. This model simulates Migdal’s method, on which virtually all calculations performed so
far for the ionization process are based. Migdal’s method yields an ionization probability that
is in reasonable agreement with experiment. In model II, the α particle is treated as a quantum
mechanical wave that slowly leaks out from the nucleus. The ionization probability that follows
from model II, however, is far smaller than that of model I. Implications of this difference are
discussed.

1. Introduction

When the nucleus of an atom decays by emitting an α particle, the surrounding electrons are
perturbed and the atom may be ionized. This is a very old problem but there remains a curious
aspect that is still not well understood.

In 1941 Migdal proposed a method for calculating the ionization probability [1]. Migdal
assumed that the α particle emerges from the nuclear surface at a certain time, say t = 0, and
travels outwards. He treated the α particle as a point charge that obeys a classical equation
of motion. The nuclear charge number decreases from Z to Z − 2 suddenly at t = 0. The
surrounding electrons are perturbed by the moving α particle and the sudden change in the
nuclear charge. Migdal’s pioneering work set a foundation on which virtually all the later
calculations for the ionization process are based [2, 3]. Although there have been many
improvements, the basic assumption that the α particle can be treated as a classical particle
has remained in all of those calculations. Migdal’s theory and experiment are in reasonable
agreement.

Ideally the α particle should be treated quantum mechanically. According to the model
of α decay, proposed by Gamow [4] and by Condon and Gurney [5], the α particle is initially
confined within a nucleus and it slowly leaks out, tunnelling through the repulsive Coulomb
barrier. The model gives a simple and convincing explanation of the exponential decay law.
In this interpretation the rate at which the quantum mechanical wave associated with the α

particle leaks out from the nucleus is characterized by the decay half-life, which is usually
very long on the atomic time scale. The nuclear charge number changes from Z to Z − 2 also

0305-4470/00/315547+20$30.00 © 2000 IOP Publishing Ltd 5547



5548 F Kataoka et al

at the same slow rate. If we take this picture of the α-decay process, the perturbation on the
electrons is almost adiabatic. Consequently the ionization probability that follows from this
model will be very small. How can this be consistent with the results of Migdal’s method?
This is the curious aspect of the process that we mentioned in the first paragraph.

The purpose of this paper is to gain insight into the problem by means of simple schematic
models in one dimension that simulate the ionization process. We are interested in the
conceptual aspect of the problem rather than the detailed realistic description of the decay
process. We consider two models. The first model, which we label model I, simulates Migdal’s
method. In it we treat the α particle as a classical point particle. In the second model, model
II, the α particle is represented by a quantum mechanical wave that slowly leaks out from the
nucleus. We find that the two models indeed lead to very different consequences. We discuss
implications of this difference.

In section 2 we set up the two models. In section 3 we show the calculations and results
of the two models. The models are constructed in such a way that the atom is ionized only
through the interaction between the electron and α particle. In section 4 we consider variants
of the models which include the effects of the change in the nuclear charge. A summary and a
discussion are given in section 5. Some details of the calculations are relegated to appendix A.
In appendix B we examine a schematic model for atomic ionization caused by a bombarding
α particle. This problem has some, although limited, relevance to the subject of the main text.

2. Models

We consider two one-dimensional models for atomic ionization due to nuclear α decay. Each
model consists of an ‘atom’ and an α-decaying ‘nucleus’. For simplicity we assume that the
atom has only one ‘electron’, and that the nucleus is fixed at the origin. In this section we
present the models; the details of the calculations will be given in section 3.

Let us begin with model I. We treat the α particle as a classical point particle that is emitted
by the nucleus at t = 0 and travels at constant speed vα in the positive x direction. The electron
is subject to two interactions, one with the nucleus and the other with the moving α particle. In
the actual case these interactions are coulombic but in our model we assume simple artificial
interactions. The Hamiltonian for the electron is

HI = He + V (xe, xα) (2.1)

where

He = pe
2

2me
+ Ue(xe). (2.2)

The subscripts e and α refer to the electron and the α particle, respectively. He is the
Hamiltonian of the model atom with the daughter nucleus. Potential Ue is due to the nucleus
after the α particle has left, and potential V represents the interaction between the electron
and the α particle. We consider only the half-space of x > 0 and assume that the electron
wavefunction vanishes at x = 0.

For Ue we assume the following Pöschl–Teller potential [6, 7]:

Ue(xe) = − (h̄λ)2

2me

N(N + 1)

cosh2 λxe
(2.3)

where λ areN are constants. The atomic states (in the absence of the α particle) are determined
by the Schrödinger equation for stationary states,

(He − εn)χn(xe) = 0 χn(0) = 0 (2.4)
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which can be solved analytically. We assume that N is an integer because then the solutions
are particularly simple. The energy eigenvalues are given by

εn = − (h̄λ)2

2me
(N − n)2 (2.5)

where n (n < N ) is a non-negative integer. The boundary condition χn(0) = 0 restricts the
values of n to odd integers. For N we take N = 4, in which case there are two bound states
with n = 1 and 3. In addition there are scattering states with continuous energy ε, which
we denote with χε(xe). We give explicit expressions for the wavefunctions for the bound and
scattering states in appendix A.

For V (xe, xα) we assume an attractive δ-function potential,

V (xe, xα) = −gδ(xe − xα) (2.6)

where g > 0 is a constant. It is known that the δ-function potential can be taken as a one-
dimensional simulation of the Coulomb potential, see, e.g., [8,9]. We do not use a potential of
the form of 1/|x| because it exhibits rather strange features, see [10] and references therein. In
the numerical illustrations we also examine a smeared-out version of the δ-function potential.
(We did not assume a δ-function potential for Ue because we wanted to have more than one
bound states.) The α particle is a classical point particle that moves at constant speed vα ,

xα = vαt t > 0. (2.7)

Then (2.6) becomes V (xe, xα) = −gδ(xe − vαt), which is a time-dependent potential
experienced by the electron.

The wavefunction of the electron ψ(xe, t) for t > 0 is determined by the time-dependent
Schrödinger equation(

ih̄
∂

∂t
− HI

)
ψ(xe, t) = 0 (2.8)

together with the condition that the electron is in the ground state at t = 0,

ψ(xe, 0) = χ1(xe). (2.9)

The mass of the α particle does not appear in (2.8).
The electronic transitions are caused by V (xe, xα). This model and also model II given

below as such do not simulate the effect due to the change in nuclear charge, since we have
assumed that the electron wavefunction vanishes at x = 0, where the nucleus is located. In
section 4 we examine variants of the models, with a different boundary condition such that the
effect of the change in the nuclear charge can be simulated.

The atomic transition probability from state 1 to state n is given by

pn(t) =
∣∣∣∣
∫ ∞

0
dxe χ

∗
n (xe)ψ(xe, t)

∣∣∣∣
2

. (2.10)

The probabilitypε(t) dε for transition to the continuum state of energy between ε and ε+dε can
be calculated by replacing χn(xe) with χε(xe) and multiplying the expression corresponding
to (2.10) by dε. For the bound states we actually have only n = 1 and 3. Note that, since
initially the atom is in the ground state, p1(0) = 1 and p3(0) = pε(0) = 0. For t � 1/(λvα)
where 1/λ is of the order of the radius of the model atom, we will find that pn(t) ≈ pn(∞).
These probabilities all add up to unity,∑

n=1,3

pn(t) + pinz(t) = 1 where pinz(t) =
∫ ∞

0
dε pε(t). (2.11)



5550 F Kataoka et al

We compare these transition probabilities with their counterparts of model II. In doing
so we recall that, although we assumed above that the α particle is emitted at t = 0, actually
the α particle may be emitted any time. It is understood, however, that the probability for the
emission to occur in the time interval from t ′ to t ′ +�t ′ is (�/h̄)e−�t ′/h̄�t ′. Therefore it makes
more sense to consider the probability that the electron is in state n at time t to be

P I
n(t) = e−�t/h̄pn(0) +

�

h̄

∫ t

0
dt ′e−�t ′/h̄pn(t − t ′) (2.12)

which is a combination of probabilities of two sequential events. The first term on the right-
hand side corresponds to the situation where the nucleus has not decayed yet, and the atom
remains in the given initial state. The second term consists of a product of two probabilities,
one for the emission occurring in the time interval of �t ′ and the other for the atom being
ionized at time t . For the sum of the probabilities defined by equation (2.12) we obtain∑

n=1,3

P I
n(t) + P I

inz(t) = 1 where P I
inz(t) =

∫ ∞

0
dε P I

ε (t). (2.13)

Note that P I
n(t) ≈ pn(t) if t � 1/(λvα) and t � h̄/�. We will choose the parameters of the

model such that h̄/� � 1/(λvα). Let us add that Migdal simply calculated pI
n(t) rather than

P I
inz(t) [1]. This is because he was only interested in the ionization probability in the limit of

t → ∞.
We solve the time-dependent Schrödinger equation (2.8) numerically by means of

algorithms described in [11–14], and use the ‘exact’ solution to calculate the transition
probabilities. It is useful to compare this exact calculation with perturbation theory. In first
order with respect to g we obtain

ppt
n (t) =

(g
h̄

)2
∣∣∣∣
∫ t

0
dt ′ei(εn−ε1)t

′/h̄
[ ∫ ∞

0
dxe χ

∗
n (xe)δ(xe − vαt)χ1(xe)

]∣∣∣∣
2

(2.14)

where n 
= 1. Then P
I,pt
n
=1(t) is given by (2.12) in which pn is replaced by p

pt
n . p1(t) can be

determined by using (2.11).
Let us turn to model II, which we define by means of the Hamiltonian

HII = He + Hα + V (xe, xα) (2.15)

where

Hα = pα
2

2mα

+ Uα(xα). (2.16)

Uα represents the interaction between the α particle and the daughter nucleus. It consists of
a repulsive potential barrier that surrounds an attractive potential. For simplicity we assume
that Uα vanishes beyond a certain distance, which is not much larger than the nuclear radius.
Unlike model I, model II deals with a two-particle system of the electron and α particle (in the
presence of the fixed daughter nucleus). The two-body wavefunction�(xe, xα, t) is determined
by solving (

ih̄
∂

∂t
− HII

)
�(xe, xα, t) = 0. (2.17)

This equation as such is difficult to solve numerically because there are two very different
distance scales involved, i.e. atomic and nuclear distances.

Our strategy for finding a solution to (2.17) is to solve it in two steps. In the first step we
solve (

ih̄
∂

∂t
− Hα

)
ψα(xα, t) = 0. (2.18)
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Equation (2.18) determines, in the absence of the electron, how the wavefunction of the emitted
α particle is propagated. Solving (2.18) itself is already a nontrivial problem, which we have
recently discussed in considerable detail [15, 16]. We assume that the decay process is a very
slow one and that it obeys the exponential decay law. We have found that ψα in such a case
can be reduced to a simple form in a very good approximation. As far as ψα well outside the
nucleus is concerned, the details of Uα are unimportant. The approximate expression for ψα

is [15]

ψα(xα, t) = −
√
ρα(xα, t) exp

{
− i

h̄

[
Eα − 1

2mα

(
�

2vα

)2
]
t + ikαxα

}
(2.19)

ρα(xα, t) = e−�t/h̄ρρ(xα, 0) +
�

h̄vα
exp

[
−�

h̄

(
t − xα

vα

)]
θ

(
t − xα

vα

)
(2.20)

where Eα = mαv
2
α/2 is the energy of the α particle, � is its width and kα = mαvα/h̄. ρα is the

probability density of the α particle; θ(x) = 1(0) for x > 0 (x < 0). ρα(xα, 0) is the initial
density distribution, which is confined within the nucleus. The term e−�t/h̄ρα(xα, 0) of (2.20)
refers to the α particle still remaining in the nucleus. It is understood that

∫ ∞
0 dx ρα(x, 0) = 1.

Then it follows that
∫ ∞

0 dx ρα(x, t) = 1 for any t > 0. On the atomic scale the nuclear
radius is practically zero. In this sense ρ(xα, 0) can be taken as δ(xα) with the understanding
that

∫
dx δ(x) = 1. Actually this δ-function term of ρα(xα, t) has no effect on the electron

because, as we have already pointed out for model I, we assume that the electron wavefunction
vanishes at x = 0. Its effects will be included in the variants of the models which we examine
in section 4.

Before proceeding to the next step of solving (2.17) let us examine the structure ofψα(xα, t)

of (2.19) in some detail. It has a ‘wavefront’ at xα = vαt . The amplitude of ψα(xα, t) at the
wavefront is

√
�/(h̄vα), which is very small in the slow-decay situations that we consider. The

amplitude at the typical atomic distance of xα = λ−1 is given by

ρ1/2(λ−1, t) =
√

�

h̄vα
exp

[
− �

2h̄

(
t − 1

λvα

)]
. (2.21)

After the wavefront passes this position of xα = λ−1 the amplitude steadily decreases from its
maximum value of

√
�/(h̄vα). The expectation value of xα with respect to ψα(xα, t) is given

by

〈ψα|xα|ψα〉 =
∫ ∞

0
dxα ρ(xα, t)xα = vαt − h̄vα

�
(1 − e−�t/h̄). (2.22)

Its speed is given by
d

dt
〈ψα|xα|ψα〉 = vα(1 − e−�t/h̄). (2.23)

When �t/h̄ � 1, we obtain
1

vα

d

dt
〈ψα|xα|ψα〉 → �t

h̄
� 1. (2.24)

Although the wavefront moves at speed vα , the average position of the α particle moves at a
much smaller speed in the early stage of the decay process. This is because the bulk of the
wavefunction is still within the nucleus. As t becomes greater than �/h̄ the average velocity
approaches vα . By that time however the amplitude of (2.21) has become very small, and most
of the wavefunction has escaped from the atomic region.

In the second step of solving (2.17) we write �(xe, xα, t) as

�(xe, xα, t) = ψα(xα, t)ψ(xe, xα, t). (2.25)
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By putting this expression into (2.17) we obtain

ψα(xα, t)

(
ih̄

∂

∂t
− He − V

)
ψ(xe, xα, t) +

h̄2

2mα

(
ψα

∂

∂xα
+ 2

∂ψα

∂xα

)
∂ψ(xe, xα, t)

∂xα
= 0.

(2.26)

We will use the approximate ψα of (2.19) throughout the following calculations. We then
obtain

2
∂ψα

∂xα
= F(xα, t)ψα where F(xα, t) ≡ 2ikα +

1

ρα

∂ρα

∂xα
. (2.27)

Then (2.26) can be reduced to[
ih̄

∂

∂t
− He − V +

h̄2

2mα

(
∂2

∂x2
α

+ F
∂

∂xα

)]
ψ(xe, xα, t) = 0. (2.28)

We are interested in solutions of (2.26) and/or (2.28) with the initial condition

ψ(xe, xα, 0) = χ1(xe). (2.29)

If we take the θ function of ρα literally, the term (1/ρα)∂ρα/∂xα of (2.27) is ambiguous.
In the actual calculations, therefore, we replace θ(x) with

f (x) = 1

1 + e−γ x
(2.30)

where γ > 0 is a constant. It is understood that 1/γ is of the order of the nuclear size, much
smaller than the atomic radius. As long as 1/γ is very small on the atomic scale, the ionization
process is insensitive to γ . In numerical calculations we use 1/γ = �x where �x is the mesh
that we specify in the next section. Note that f −1(x) df (x)/dx = γf (−x). Hence we use
the following expression:

F(xα, t) = 2ikα +
�

h̄vα
− γ

vα
f

(
−t +

xα

vα

)
(2.31)

in (2.28).
Equations (2.26) and (2.28) are still not easy to solve because there are two spatial

coordinates involved. Therefore we simplify the model in two ways, which we will refer
to as models IIa and IIb. In model IIa we assume that ψ(xe, xα, t) is independent of xα . This
may seem like a drastic assumption but we will see that this is actually a reasonably good
approximation, at least for the case where the electron is not too tightly bound in the atom.
Since ∂ψ(xe, xα, t)/∂xα = 0, equation (2.26) becomes much simpler. By multiplying it by
ψ∗
α and integrating with respect to xα we obtain[

ih̄
∂

∂t
− He − gρα(xe, t)

]
ψ(xe, t) = 0. (2.32)

This is simply the Hartree equation for the electron. mα does not appear in this equation. All
the information on the nuclear α decay is contained in ρα(xe, t). If we replace ρα(xe, t) with
δ(xe − vαt), (2.32) is reduced to (2.8) of model I with V (xe, xα) = −gδ(xe − vαt), but this
δ(xe − vαt) is very different from ρα(xα, t) of (2.20). Recall also (2.23). Equations (2.8)
and (2.32) are bound to lead to very different results.

The atomic transition probabilities can be calculated by

P IIa
n (t) =

∣∣∣∣
∫ ∞

0
dxe χ

∗
n (xe)ψ(xe, t)

∣∣∣∣
2

. (2.33)
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These probabilities add up as∑
n=1,3

P IIa
n (t) + P IIa

inz (t) = 1 where P IIa
inz (t) =

∫ ∞

0
dε P IIa

ε (t). (2.34)

If we use first-order perturbation theory we obtain

P IIa,pt
n (t) =

(g
h̄

)2
∣∣∣∣
∫ t

0
dt ′ei(εn−ε1)t

′/h̄
[ ∫ ∞

0
dxe χ

∗
n (xe)ρα(xe, t

′)χ1(xe)

]∣∣∣∣
2

. (2.35)

These are to be compared with P I
n(t) of (2.12).

In model IIa, we have assumed that ψ is independent of xα . Because of this assumption
some details of the correlation between the electron and theα particle are ignored. The phase of
ψα(xα, t)does not play any role in model IIa. In model IIb we take account of thexα dependence
ofψ(xe, xα, t). On the other hand, however, we assume that the electron–α interaction is weak
and we can treat it by first-order perturbation theory. We expand ψ(xe, xα, t) in terms of the
stationary wavefunctions of the electron,

ψ(xe, xα, t) =
∑
n=1,3

Cn(xα, t)χn(xe)e
−iεnt/h̄ +

∫ ∞

0
dε Cε(xα, t)χε(xe)e

−iεt/h̄. (2.36)

It is understood that

C1(xα, 0) = 1 C3(xα, 0) = 0 Cε(xα, 0) = 0. (2.37)

Expanding the C in powers of g and retaining the terms that are of first order in g, we obtain[
ih̄

∂

∂t
+

h̄2

2mα

(
∂2

∂x2
α

+ F
∂

∂xα

)]
Cn(xα, t) = −gχ∗

n (xα)χ1(xα)e
i(εn−ε1)t/h̄ (2.38)

where n 
= 1 and a similar equation for Cε(xα, t).
The system starts with the electron in state 1. The probability for finding the electron in

state n at time t is determined by the overlap of two wavefunctions. One of them is ψα(xα, t)

multiplied by ψ(xe, xα, t) of (2.36) and the other is ψα(xα, t)χn(xe)e−iεnt/h̄. The transition
probability into the electron state n is given by

P IIb
n (t) =

∣∣∣∣
∫ ∞

0
dxα ρα(xα, t)Cn(xα, t)

∣∣∣∣
2

. (2.39)

We compare this with P I
n(t) and P IIa

n (t) obtained earlier.

3. Calculations and results

Let us begin with determining the parameters in the models. In this and the next sections
we use natural units such that c = h̄ = 1. For the energy and mass we use MeV or eV. For
distance x we use units of MeV−1 or Å (=10−8 cm−1). For t we use MeV−1 or s. In this
system of units, 1 MeV−1 and 197.3 fm = 1.973 × 10−3 Å and (1.973/2.998) × 10−21 s are
interchangeable. The speed is dimensionless.

For the masses we use the following approximate values:

me = 0.5 MeV mα = 4000 MeV. (3.1)

For the potential of Ue(xe) of (2.3) we take N = 4. Then there are two bound states, with
n = 1 and 3. For the energy of the ground state ε1 we consider two cases, loose binding (LB)
and tight binding (TB). The energy of the excited state is ε3 = ( 4

9 )ε1. The parameters are
summarized in table 1. The rationale for these choices is given after we have discussed the
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Table 1. ‘Atomic’ parameters for the LB and the TB cases.

Case ε1 (eV) ε3 (eV) 1/λ ve

LB −20 −8.89 671.0 MeV−1 = 1.32 Å 0.013
TB −2000 −889 67.1 MeV−1 = 0.132 Å 0.13

properties of the α particle. The strength parameter g of the electron–α interaction V is chosen
so that the binding energy of the electron due to V alone is 25 eV, i.e.

1
2g

2me = 25 eV g = 0.01. (3.2)

The α-decay process is characterized by the energy of the α particle Eα = mαv
2
α/2 and

the energy width �. The latter is related to the decay half-life by τ1/2 = (ln 2)/�. In order
to obtain realistic values of these quantities, let us consider Po212 as the parent nucleus. Its
decay rate is the fastest among the usually listed α-decay examples: see, e.g., [17]. In this
case Eα = 8.95 MeV, � = 1.52 × 10−9 eV = 2.31 × 106 s−1 and τ1/2 = 3.0 × 10−7 s.

In our models we set Eα as

Eα = 5 MeV vα = 0.05. (3.3)

For the energy width � we take

� = 2 eV. (3.4)

Then the decay half-life becomes

τ1/2 ≈ 0.347 eV−1 ≈ 2.3 × 10−16 s. (3.5)

This half-life is unrealistically short. The reason for assuming such a short half-life is the
following. When solving the time-dependent Schrödinger equation of the models, in order to
be able to see anything interesting, we have to solve it at least up to a value of t comparable to
τ1/2. This is difficult if τ1/2 is very large. For the purpose of simulation, τ1/2 of (3.5) is large
enough because the time for the α particle to traverse the model atom is much shorter than the
decay half-life. Recall that the radius of the model atom is of the order of 1/λ. The α particle
traverses this distance in the time interval of 1/(λvα). If we take 1/λ = 1.32 Å, then we find,
with vα = 0.05, 1/(λvα) ≈ 8.8 × 10−18 s, which is much smaller than the τ1/2 of (3.5).

Let us estimate the speed of the electron in the initial bound state. The expectation value
of the kinetic energy of the electron in state 1 is roughly equal to −2ε1. Hence the average
speed of the electron ve can be estimated by ve ≈ √−2ε1/me. This leads to values of ve

in table 1 for the two choices of ε1. These values can be compared with the assumed speed
of the α particle, vα = 0.05. The two choices of the value of ε1 in table 1 represent two
typical situations in which vα is greater or smaller than ve. The binding energy of the K-shell
electron can be almost as large as 0.1 MeV. We have chosen values much smaller than this
because (2.38) becomes more difficult to solve if εn − ε1 is very large.

We solve the time-dependent Schrödinger equations numerically. We do this by
discretizing x and t , with�x = 1 MeV−1 ≈ 2.0×10−3 Å and�t = 5 MeV−1 ≈ 3.3×10−21 s.
In integrating the equations, we take xmax = 7.5 × 104 MeV−1 and tmax = 5 × 105 MeV−1.
Recall that τ1/2 ≈ 3.47 × 105 MeV−1. This value of xmax is sufficiently large such that, for
the chosen tmax, the results are insensitive to xmax.

In presenting the results of the calculations, we start with the LB case. Figure 1 shows
|ψ(xe, t)|. The major peak near the origin represents the electron in the atom. There are two
smaller peaks that are travelling out. The smaller of the two represents the electron bound to
the α particle. It moves at speed vα = 0.05. The larger peak travels at speed 2vα = 0.1. The
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Figure 1. The modulus |ψ(xe, t)| in units of MeV1/2 of the LB case of model I. Both variables x
and t are in units of MeV−1 ≈ 2.0 × 10−3 Å ≈ 0.66 × 10−21 s. The axes are scaled so that xe is
in units of 104 MeV−1 and t in units of 105 MeV−1.

Table 2. Transition probabilities for a time period equal to the half-life of decaying ‘nucleus’ for
the light-binding case. The first row corresponds to the calculations in this paper; the second row
gives the first-order perturbation results for the same quantities.

Calculation p3(τ1/2) P I
3(τ1/2) P IIa

3 (τ1/2)

Model 1.08 × 10−4 7.59 × 10−5 1.67 × 10−6

Perturbation 1.28 × 10−4 8.55 × 10−5 1.67 × 10−6

latter represents the electron that has been knocked out by the α particle. This corresponds to
the situation in classical mechanics in which a light particle at rest is hit by a heavy particle
and obtains a speed twice that of the heavy particle.

In comparing the probabilities obtained in different models we focus on the transition
1 → 3. Figure 2 shows p3(t) and P I

3(t). Recall that τ1/2 = 3.47 × 105 MeV−1. Although we
do not show them, ppt

3 (t) and P
I,pt
3 (t) are very similar to their counterparts shown in figure 2.

These probabilities at t = τ1/2 are listed in table 2. The perturbation theory somewhat
overestimates the probabilities. We have also calculated the probability for the electron to
remain in the ground state and that for going into continuum states. We have found that (2.11)
is very accurately satisfied.

Let us turn to models IIa and IIb. Figure 3 shows |ψ(xe, t)| of model IIa. This can be
compared with figure 1 of model I. Note the difference in the scale. Unlike the case in figure 1,
only one travelling peak is noticeable. Its speed is 2 × vα = 0.1. This peak is caused by the
sharp wavefront of ψα(xα, t), that travels at speed vα . This peak is smaller by a factor of 10−3

in its height than its counterpart of model I. Figure 4 shows P IIa
3 (t) and P IIa

inz (t) as functions
of t .

At t = τ1/2 we obtain

P IIa
3 (τ1/2) = 1.67 × 10−6 (3.6)

P
IIa,pt
3 (τ1/2) = 1.67 × 10−6. (3.7)
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case in graph (b). The unit for t is the same as in figure 1.
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Figure 3. The modulus |ψ(xe, t)| in units of MeV1/2 of model IIa for the LB case. The units are
the same as those of figure 1.

For model IIa the perturbation calculation is very accurate. We have again calculated the
probability for the electron remaining in the ground state and that for going into continuum
states. We have confirmed that (2.13) is very accurately satisfied.

In model IIb, we found it more difficult to solve (2.36) than (2.8) and (2.32). We
encountered an instability when t exceeded 7 × 104 MeV−1. Figure 5 shows P IIb

3 (t) only
up to t = 1 × 104 MeV−1. The results for t = 5 × 104 MeV−1 are listed in table 3. The
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probabilities of models IIa and IIb agree very well for the LB case and reasonably well for the
TB case, but for both cases they are much smaller than that of model I.

In the TB case we have listed the probabilities at t = 1 × 104 MeV−1. P IIa
3 (t) actually
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Table 3. Comparison of transition probabilities to state n = 3 of the three models.

Case t (MeV−1) P I (t) P IIa
3 (t) P IIb

3 (t)

LB 5 × 104 1.03 × 10−4 1.43 × 10−6 1.42 × 10−6

TB 1 × 104 6.67 × 10−1 2.61 × 10−8 7.23 × 10−9

shows regular fluctuations between approximate minimum and maximum values of 6 × 10−9

and 6 × 10−8 and with a period of about 3.5 × 103 MeV−1. The value given in table 3 is the
average taken over several fluctuations. By t ≈ 2000 MeV−1, the wavefront of the α-particle
wavefunction has left the atom. The wavefront is followed by an exponentially decreasing tail.
The small fluctuations seen in the transition probability P IIa

3 (t) are probably due to this tail,
which causes multiple excitations and deexcitations. P IIb

3 (t) does not show such fluctuations
because it has been obtained in a first-order perturbation calculation, which does not take
account of the possibility of multiple interaction processes. As compared with the LB case,
for the TB caseP I

3(t) is larger, whileP IIa
3 (t) andP IIb

3 (t) are smaller. Therefore the gap between
models I and II has become much larger.

Let us add that, for the α–electron interaction, we also examined a smeared-out version
of the δ-function potential. We used a potential of the Gaussian form and varied its width up
to 20 in units of �x. We confirmed that the results are insensitive to the change of the width.

4. Effects of the change in the nuclear charge

There are two mechanisms that cause electronic transitions: one is the change in the nuclear
charge and the other is the interaction between the electron and the travelling α particle. The
models we have examined so far do not accommodate the effect of the change in the nuclear
charge for the following reasons.

In model I, the α particle is at x = 0 at t = 0. The charge localized around the origin
suddenly disappears when the α particle is emitted. Because of the boundary condition that
the electron wavefunctions all vanish at the origin and that the electron–α interaction is a δ

function, the electron does not feel this sudden change at the origin. The electron wavefunction
at t = 0 is χ1(xe), an eigenstate of He of (2.2). He does not include the interaction due to the
α particle.

In model II the probability density for the α particle is given by (2.20). The first term
e−�t/h̄ρα(xα, 0) represents the α particle that is still within the nucleus; the latter is taken as
a point particle and ρα(xα, 0) is replaced with δ(xα). In sharp contrast to model I the charge
localized around the origin decreases in time very gradually. The electron however is again
insensitive to the charge at the origin for the same reason as we explained in the preceding
paragraph.

In this section we propose variants of the two models. Instead of the half-space of x > 0
that we considered before, we now consider the entire space of x > 0 and x � 0. Then the
ground state of the model atom is of even parity and the α particle at the origin has an effect
on it. There were two reasons why we did not do so from the beginning. One is that it is
somewhat easier to solve the equations of the model if we restrict ourselves to x > 0. The
other is that we wanted to isolate the effect of the electron–α interaction.

We consider models I and IIa but for the entire space and will refer to these alternative
versions as I′ and II′, respectively. We do not consider model IIb because we have seen that the
results of models IIa and IIb are very similar. We use the same Hamiltonians as before except
for the following two changes. One of the changes is concerned with potential Ue. This time
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we take N = 3 so that U supports three bound states of n = 0, n = 1 and n = 2. For λ we
keep the same value as before. Then the lowest eigenvalue of He with the revised Ue, which
we denote by ε0, remains the same as before,

ε0 = − 4λ2

2me
=

{
−20 eV (LB)

−2000 eV (TB).
(4.1)

The higher eigenvalues are related to ε0 by ε1 = ( 4
9 )ε0 and ε2 = ( 1

9 )ε0. The Hamiltonian He

determines the atom after the α particle has been completely removed. For finite t , the atom
is subject to the interaction that consists of Ue and the interaction with the α particle.

The other change is for the probability density that appears in model II′. We replace
ρα(xα, t) of (2.20) with

ρ ′
α(xα, t) = e−�t/h̄δ(xα) +

�

2h̄vα
exp

[
−�

h̄

(
t − |xα|

vα

)]
θ

(
t − |xα|

vα

)
. (4.2)

The wavefunction of theα particle propagates out in both the positive and negative x directions.
Note, however, that the α particle travels only in one (positive x) direction in model I′. Model
II′ has left–right symmetry but the symmetry is broken in model I′.

The time-dependent Schrödinger equation for model I′ is the same as (2.8). The equation
for model II′ is (2.32) in which ρα is replaced by ρ ′

α . There is an important change in the initial
condition. In models I and II the electron wavefunction started as χ1(xe); see (2.9) and (2.29).
This time the initial electron wavefunction is χ ′

0(xe), that is, the ground state solution (with
n = 0) of

[He − gδ(xe) − ε′
n]χ ′

n(xe) = 0. (4.3)

Note that ε′
n < εn for n = 0 and 2 because of the additional attraction at the origin. The odd-

parity state of n = 1 is not affected by the δ-function potential at the origin. The δ-function
potential makes the derivative of the even-parity wavefunction discontinuous, i.e.

dχ ′
n

dxe
(0+) = −gmeχ

′
n(0) (4.4)

for n = 0, 2.
Although we only need the solution of n = 0 in our actual calculations, let us examine

how the energies of the states of n = 0 and 2 are affected by the δ-function potential at the
origin. In first-order perturbation theory we obtain

ε
pt
0 = ε0 − 15

16gλ ε
pt
2 = ε2 − 3

16gλ. (4.5)

We also solve (4.3) numerically to obtain the exact energies. The results are displayed in table 4.
The excited state of n = 1 is of odd parity and is not affected by the δ-function potential at the
origin.

Long after the α particle has escaped from the atom, the electron state becomes a
superposition of eigenstates of He. We are interested in the transitions to the eigenstates
of He, which we designate by n = 0, 1, 2 and ε. The transition probabilities can be calculated
in the same manner as for models I and II. Note however from the last line of table 4 that
p0(0) < 1 and p2(0) 
= 0. Since the sum of the probabilities must add to unity the pε(0) are
not all zero either.

In figure 6 we plot the magnitude of the wavefunction |ψ(xe, t)| for model I′. The initial
wavefunction has a discontinuous slope at xe = 0 because of the δ-function component of the
atomic potential, but in time the latter moves to the right with the α particle and can be seen as
the spike which represents the electron captured by the α particle. The atomic wavefunction
reverts to that of the daughter nucleus with a smaller binding energy and hence a more spread
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Table 4. Properties of the parent and daughter nuclei for the LB and TB cases when the system
extends over the range −∞ < x < ∞.

λ = 1491 eV (LB) λ = 14 910 eV (TB)

n = 0 n = 1 n = 2 n = 0 n = 1 n = 2

εn (eV) −20.0 −8.89 −2.22 −2000 −889 −222
ε′
n (eV) −50.7 −8.89 −5.10 −2150 −889 −251

ε
pt
n (eV) −34.0 −8.89 −5.02 −2140 −889 −250
pn(0) 0.7633 0.0000 0.0612 0.9972 0.0000 0.0012
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Figure 6. The modulus |ψ(xe, t)| in units of MeV1/2 of the LB case of model I′. The axes are
scaled so that xe is in units of 104 MeV−1 and t is in units of 104 MeV−1.

out wavefunction. As is the case with model I there is a peak in the wavefunction that travels
with twice the speed of the α particle. Clearly the initial symmetry of the wavefunction is
broken since the α particle has a constant velocity to the right. For model II′ the wave function
remains symmetric and has a travelling peak in both directions, compared to the wavefunction
shown in figure 3, which has a peak travelling to the right only.

In figure 7 we show graphs of the logarithm of the transition probabilities p(t) as defined
in (2.10) for models I′ and II′. The plots show that the more quantum mechanical model yields
results that are several orders of magnitude smaller than the model with the classical trajectory
of the α particle. We have not shown the decay-rate-averaged transition probabilities (2.12)
for model I′, since at large times these probabilities approach p(t). Thus the curves P I′(t)

of model I′ would rise more slowly but have the same asymptote as pI′(t). Regarding the
transition to state 1, there is a distinct difference between the predictions of models I′ and II′.
Note that pII′

1 (t) = 0. The transition to state 1 is allowed in model I′ but not in model II′. In
the latter, parity is conserved. Note also that P I′

2 (t) � P II′
2 (t).

The ionization process in model I′ consists of two parts. First there is a sudden change
of the nuclear charge, which can be treated by the sudden approximation, and which causes
transitions to excited states of the daughter atom. Secondly the motion or field that the α

particle produces results in further transitions to excited levels. In table 5 we show transition
probabilities at t = 0 and t = 5 × 104 MeV−1. The sudden approximation gives a large
contribution to the transition probabilities in the case of model I′ and another significant
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Table 5. Sudden and long-time transition probabilities for the LB case.

Model t (MeV−1) p0(t) p1(t) p2(t) pinz(t) = ∫ ∞
0 dε pε(t)

0 0.7633 0.0000 0.0612 0.1755
I′ 5 × 104 0.5078 0.0013 0.0890 0.4019
II′ 5 × 104 0.9977 0.0000 0.0005 0.0018

contribution arises from the changing field due to the travelling α particle. In model II′ the
process seems adiabatic. The nuclear charge and the field that the electron experiences changes
slowly, so that the system goes primarily from the ground state of the parent atom to that of
the daughter atom with small ionization and excitation probabilities.

5. Summary and discussion

In order to gain insight into the mechanism of atomic ionization caused by the nuclear α decay,
we examined a system that consists of a daughter nucleus, an α particle and an electron. The
nucleus is fixed at the origin. For this system we considered schematic models of two types:
type I with variants labelled I and I′, and type II with variants II and II′. The two types differ in
the way the α particle is treated. In the models of type I the α particle is treated as a classical
point particle. This simulates Migdal’s approach. The models of type II treat the α particle
quantum mechanically. It is represented by a wave that slowly leaks out from the nucleus.

Models I and I′ differ in the treatment of the change in the nuclear charge, but we found
that this difference is of minor importance. Models II and II′ differ in the same way. The crux
of the problem is that the ionization probability differs by a large factor for the two types of
model; that is, it depends on whether the α particle is treated as a classical particle or as a
quantum mechanical wave.
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In models I and I′, we treated the effects of theα decay on the atom in two ways, one exactly
and the other by first-order perturbation theory. We confirmed that first-order perturbation
theory works satisfactorily. In models of type II, unlike the models of type I, it is difficult to
perform exact calculations. We therefore treated the effects due to the α decay by first-order
perturbation theory. Depending on the treatment of the electron–α correlation, we have two
versions of model II, referred to as IIa and IIb, but the difference between these two versions
turns out not to be very important. See table 3 and figures 4 and 5.

Although there is room for improvement in the calculations of the models of type II, it
is clear that these models make predictions of the ionization or excitation probabilities which
are significantly smaller than those of the models of type I. For computational convenience we
assumed much larger than realistic values for the α-decay width �. If we consider realistic
values of �, the difference in the results of the two types of model would be much larger.
As far as we know time-dependent quantum mechanical calculations of this nature for the
ionization problem have not been performed before. The calculations of models of type II
confirm the notion that in decaying systems with long half-lives the change in the (electric)
field experienced by the electrons is so slow that the excitation process is nearly adiabatic.
Thus the conclusion to be drawn from this analysis is the paradoxical situation that the fully
quantum mechanical calculations with the models of type II give results which do not agree
with those of models of type I. However, the models of type I, which are hybrids of quantum
and classical mechanics, lead to reasonable agreement with experiment.

It is appropriate to point out that an earlier calculation [18] obtained consistency between
results of a semi-classical and a quantum calculation of the atomic ionization due to α decay.
(See also [19].) Although in that calculation the α particle is treated quantum mechanically, it
is not done in a fully time-dependent manner. The decay problem is treated as that of a quasi-
stationary state with complex energy. This implicitly assumes that the nucleus is a constant
source of α particles (which is unrealistic). It is interesting that such a treatment leads to results
which are approximately equal to those of Migdal. It seems imperative that the time-dependent
quantum formalism and its application be examined carefully in view of the results that we
have obtained in this paper. This may lead to the discovery of unwarranted assumptions either
of a calculational nature or of a more fundamental character.

Finally let us mention another problem which is closely related to the subject of this paper.
This is bremsstrahlung in α decay. Triggered by recent experiments [20, 21], there has been
a surge of interest in this topic. A few theoretical papers have appeared but let us quote only
the very recent one [22], through which one can trace earlier references. We are particularly
interested in the time-dependent approach to the bremsstrahlung process of Bertulani et al [22].
In the earlier references on this topic, a stationary or quasi-stationary approach is taken.
Bertulani et al solved the time-dependent Schrödinger equation for α decay. By using the thus-
obtained wavefunction of the α particle, they calculated the average radial momentum pr(t),
which corresponds to our m(d/dt)〈ψα|x|ψα〉. They found this pr(t) to be much smaller than
its classical counterpart. This is consistent with what we pointed out below (2.23). By using
pr(t) as the momentum of a classical particle of charge 2, they calculated the bremsstrahlung
probability. The probability so obtained is naturally much smaller than the probability (except
for a photon-energy range around 8 MeV) that follows from a classical approach with the
classical counterpart of momentum pr(t). The results of Bertulani et al as such cannot be
compared directly with experiments because the situation that they chose (for computational
convenience) does not exactly correspond to those of experiments [20,21]. If their calculation
were performed for experimental situations (which is quite prohibitive as they pointed out), it
would probably result in an emission probability significantly smaller than the experimental
value. There is an obvious similarity between the results of Bertulani et al and ours.
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Appendix A. Pöschl–Teller potential

In this appendix we give wavefunctions for the relevant eigenstates of He of (2.2) with
the Pöschl–Teller potential of (2.3). We suppress subscript e of xe. We normalize the
wavefunctions such that∫ ∞

0
dx χ∗

n (x)χm(x) = δnm

∫ ∞

0
dx χ∗

ε (x)χε′(x) = δ(ε − ε′). (A.1)

χn(x) and χε(x) are orthogonal.
For models I, IIa and IIb, we take N = 4. We consider only x > 0 and require that the

wavefunctions vanish at x = 0. Then there are two bound states with n = 1 and 3. Their
eigenvalues are determined by (2.5). Their wavefunctions are given by

χ1(x) =
√

105λ/8 sinh λx cosh−4 λx (A.2)

χ3(x) =
√

5λ/8(3 − 4 sinh2 λx) sinh λx cosh−4 λx. (A.3)

The wavefunction of the scattering state of energy ε = (h̄k)2/(2me) is given by

χε(x) =
√

2me

πh̄2k
sin[kx + δk(x)] (A.4)

where

tan δk(x) = 5λk[(11λ2 + 2k2) − 21λ2 tanh2 λx] tanh λx

(λ2 + k2)(9λ2 + k2) − 45λ2(2λ2 + k2) tanh2 λx + 105λ4 tanh4 λx
. (A.5)

In models I′ and II′ examined in section 4, we take N = 3. We consider the entire x space.
The wavefunctions are normalized over −∞ < x < ∞. There are three bound states with
n = 0, 1 and 2. Their wavefunctions are given by

χ0(x) =
(√

15λ/4
)

cosh−3 λx, (A.6)

χ1(x) =
(√

15λ/2
)

sinh λx cosh−3 λx, (A.7)

χ2(x) =
(√

3λ/4
)
(5 − 4 cosh2 λx) cosh−3 λx. (A.8)

This χ1(x) is different from that of (A.2) because the value of N of the potential is different.
Since we do not calculate the probability of transition into scattering states for these models,
we do not give expressions of the scattering wavefunctions.

Appendix B. Atomic ionization caused by a bombarding α particle

Consider an atom in its ground state, which is bombarded by an α particle. The atom may be
excited or ionized. Let us simulate this process by means of a simple one-dimensional model.
We consider the entire x space as we did in section 4. The model atom, which is fixed at the
origin, can take only two states, |1〉 and |2〉. In this model, which is much simpler than those
we used in the main text, we do not explicitly see the electron. The particle that we refer to in
the following simulates the α particle. We suppress subscript α. The atom interacts with the
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particle through potential V (x) where x is the coordinate of the particle. The atom is initially
in the ground state |1〉. We examine the probability of finding the atom in the excited state |2〉
after the collision.

We consider two models, A and B. In model A we treat the particle as a classical point
particle travelling with a constant speed v. In model B the incident particle is represented by
a wavepacket. Its centre starts with speed v. Models A and B can be compared with models
of types I and II, respectively, of the main text the Hamiltonian of the model atom by itself is

H0 =
2∑

n=1

εn|n〉〈n|. (B.1)

For the particle-plus-atom system of model A we assume the Hamiltonian

HA = H0 + V (vt)(|1〉〈2| + |2〉〈1|). (B.2)

The particle starts at x0 < 0 and moves with constant speed v > 0. It passes the centre of the
atom at t = 0. For the particle–atom interaction potential we assume

V (x) = − gλ√
π

e−(λx)2
. (B.3)

It is understood that V (x0) is negligible. We represent the wavefunction of the two-level atom
by

�A =
2∑

n=1

cn(t)|n〉, (B.4)

and solve the time-dependent Schrödinger equation ih̄∂�A/∂t = HA�A to obtain the
coefficients cn(t).

In model B we assume the Hamiltonian

HB = − h̄2

2m

∂2

∂x2

2∑
n=1

|n〉〈n| + He + V (x)(|1〉〈2| + |2〉〈1|). (B.5)

We write the wavefunction of the particle–atom system as

�B =
2∑

n=1

ψn(x, t)|n〉. (B.6)

We solve the time-dependent Schrödinger equation of model B with the initial condition for
the wavefunction,

ψ1(x, 0) =
(

1

2πw0
2

)1/4

exp

[
−

(
x − x0

2w0

)2

+
imv(x − x0)

h̄

]

ψ2(x, 0) = 0.

(B.7)

ψ1(x, 0) represents a Gaussian wavepacket with its centre at x = x0. The width of the
wavepacket is characterized by w0. The phase factor exp[imv(x − x0)/h̄] determines the
initial velocity v of the centre of the wavepacket.

There is an important difference between this collision problem and that of the α

decay of the main text. The time derivative of the expectation value 〈ψB|x|ψB〉 remains
approximately equal to v throughout the collision process that we consider. This is in contrast
to (d/dt)〈ψα|xα|ψα〉 of (2.23), which is much smaller than v in the early stage of the decay
process.

In the numerical work of this appendix we use atomic units such that h̄ = e2 = a0 = 1
and c = 137 where a0 is the Bohr radius. For the parameters of the model we choose ε1 = 0,
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Figure B.1. Transition probabilities from state 1 to 2 as a function of time using model A for
three different velocities of the projectile. The parameters are ε1 = 0, ε2 = 1, λ = 1, g = 2 and
m = 100.

ε2 = 1, λ = 1, g = 2 and m = 100. The projectile is heavy in terms of the excitation energy:
mc2 = 1.372 × 106. In fact, its mass is 100 times the mass of the electron. We did not make
it as heavy as the α particle for computational convenience. For v we take three values, 0.1,
1 and 10. The kinetic energy of the incident particle 1

2mv
2 is equal to the excitation energy

1 when v = √
2 × 0.1. For the initial width of the wavepacket w0 we take values between 1

and 10. We calculate the probability of finding the transition probability P2(t) for models A
and B.

Figure B.1 shows the transition probability obtained in model A with various values of v.
Note that PA

2 (∞) approaches zero as v becomes small. When v = 0.1 we find PA
2 (∞) � 1,

which means that the process becomes almost adiabatic.
We repeated the calculations for model B with the same values of v and a few different

values of the widthw0 between 1 and 10. We found interesting similarities as well as differences
between models A and B. The t dependence ofP B

2 (t) in the transient period varies depending on
w0. Its peak around t = 0 becomes broader as w0 is increased. P2(∞) is however remarkably
insensitive to w0. (This is interesting in the context of the wavepacket formalism of scattering
theory, which we consider in more detail elsewhere.) As far as P2(∞) is concerned the
difference between models A and B is unimportant provided that the same value of v is used
for the two models.

Returning to the discussion of the atomic ionization caused by the nuclear α decay, we
recall that the effect on the atom is much smaller in models of type II as compared with those of
type I. There are two conceivable reasons for the difference, which are respectively associated
with the following two aspects. In models of type II the α wavefunction is such that (i) it is
spread out over a very large space region of the order of h̄v/� and (ii) the average velocity
(d/dt)〈xα〉 of (2.23) is much smaller for most of the time than the classical velocity vα of
model I. Of course these two aspects are closely related to each other. Since we find in this
appendix that the excitation due to a collision, namely, P2(∞) � 1, when v is very small,
this suggests that aspect (ii) is much more important than aspect (i). Recall also the situation
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pointed out below (2.24), namely, that, by the time when the average velocity increases toward
the end of the decay process, the amplitude of the α-particle wavefunction in the atomic region
has become very small.
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